UV Advanced Oxidation

Madjid Mohseni, Ph.D., P.Eng. Professor epartment of Chemical & Biological Engineering University of British Columbia Vancouver, CANADA

a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

Drinking Water

Micropollutants in Water (Global Dimension)

Anthropogenic fluxes affecting water quality

	10 ⁶ tons /year
Global fertilizer production (2000)	140
Global pesticide production	5
Synthetic organic production	300
Oil spills (average 1980-2000)	0.4

source: Science Magazine vol. 313 (2006)

Drinking Water

Treatment necessary before consumption for:

- Disinfection (removal of pathogens)
- Reduction of disinfection by-product (DBP) formation
- Removal of emerging pollutants
- Improving taste and odour

UV Disinfection

Presently

Several thousands drinking water facilities use UV based disinfection

Is the application of UV limited to water disinfection?

Can UV play a role in addressing other water quality challenges?

UV-Based Oxidation Processes

UV photochemical oxidation processes for water treatment involve:

- Direct photolytic action of UV on dissolved matter in water (e.g. micropollutants)
- Photochemically assisted production of oxidants for removing harmful organic matter
- Photochemically assisted catalytic processes

UV-based Oxidation

- 1879 H₂O₂ decomposition by sunlight (Downes & Blunt)
- 1899 Photolysis of carbonic acid (Bach)
- 1907 H₂O₂ decomposition by UV (Thiele)
- 1922 H₂O₂ photolysis and reaction products (Kornfeld)
- 1936 Photomineralization by VUV (Fricke & Hart)
- 1971 Photocatalytic oxidation of single compounds in the gas phase
- 2004 First full scale UV-H2O2 plant for water treatment

UV Photooxidation Advanced Oxidation Process (AOP)

OH Radical Oxidation Potential

Oxidizing species	Oxidation	
	potential (eV)	
Fluorine	3.06	
Hydroxyl radical	2.80	
Atomic oxygen	2.42	
Ozone	2.07	
Hydrogen peroxide	1.78	
Chlorine dioxide	1.57	
Chlorine	1.36	
Oxygen	1.23	

UV Oxidation Research in Water

<u>To Date:</u> Worldwide: ~5500

UV Oxidation for Water Purification Patents

To Date:

Number of Patents Worldwide: ~1,100

UV AOP in Drinking Water

- Ultraviolet + Hydrogen Peroxide: UV/H₂O₂
- Photocatalysis: UV/TiO₂
- Vacuum Ultraviolet: VUV

Target Contaminants

- Micro-pollutants
 - Pesticides
 - Pharmaceuticals
 - Personal care products
- Taste & odor (T&O)
- Gasoline additives
- Surfactants
- Flame retardants

UV-H₂O₂ Advanced Oxidation

UV-H₂O₂ AOP

 $\rm H_2O_2 + hv_{<270~nm} \rightarrow 2HO \bullet$

Impact of UV/H₂O₂ on Pesticides

Impact of UV/H₂O₂ on EDCs

Drinking Water UV-H₂O₂ AOP

Treatment conditions (commercial applications)

- Fluence: $\geq 600 \text{ mJ/cm}^2$
- H₂O₂ dose: 5 to 15 mg/L
- LP and MP Hg lamp technology

Drinking Water UV-H₂O₂ AOP

Commercial drinking water applications

Installation	UV System	Target Pollutant
Orange County Water District, CA, USA	TrojanUVPhox™	NDMA; 1,4-dioxane
West Basin Municipal Water District, CA, USA	TrojanUVPhox™	NDMA
Stockton, CA, USA	TrojanUVPhox™	1,4-dioxane
PWN Treatment Plant Andijk, Netherlands	TrojanUVSwift™ ECT	Pesticides
City of Cornwall, ON, Canada	TrojanUVSwift™ ECT	MIB & geosmin
Salt Lake City Department of Public Utilities, UT, USA	Rayox™	PCE

Sarathy, S.R. and Mohseni, M. 2006. An overview of UV-based advanced oxidation processes for drinking water treatment. IUVA News. 8(2): 16-27.

UV Photocatalysis

UV Photocatalysis

TiO₂ **Photocatalyst**

Well known photocatalyst V Chemically stable

Strong oxidation-reduction reactions

Commercial TiO₂ (Degussa P-25) 80% Anatase – 20% Rutile

PCO of Pharmaceuticals with suspended TiO₂

Photocatalytic Reactors

State of the photocatalyst

1. Slurry

2. Immobilized

3. Fluidized bed

Slurry vs. Fluidized Bed PCO

Slurry vs. Fluidized Bed PCO

Comparable degradation of contaminant in slurry and fluidized bed photocatalytic reactor

No need for downstream filtration • More feasible with fluidized bed • • process process

PCO of 2,4-D (fluidized bed photoreactor)

Vacuum UV (VUV) Photooxidation

VUV

- Radiation with wavelength between 10 200 nm
- VUV photolyzes water molecules, which produce HO• radicals

High absorptivity of water at low wavelengths

 $H_2O + hv_{vuv} \rightarrow HO^{\bullet} + H^{\bullet}$ $H_2O + hv_{vuv} \rightarrow HO^{\bullet} + e^- + H^+$

- Two common sources of VUV
 - ✓ Excimer lamp: 173 nm
 - ✓ Hg vapor lamp: 185 nm (+ 254 nm)

VUV Photooxidation of T&O

Comparison of Different AOPs

Imoberdorf & Mohseni, 2011

Large Scale Applications

- There have been more than 100 full scale UV-based AOP installations around the world
- UV-H₂O₂ is the most applied technology in large scale
- Often applied to cases (i.e. contaminants) which show persistence towards ozone and/or cases where formation of bromate in bromide containing source waters is a concern

Surface water

 (IJssel Lake) – as the
 source of drinking
 water to North Holland area

Conventional water treatment system commissioned nearly 50 years ago

- Taste & Odour problem has been a concern
- GAC was installed about 30 years to address the problem

Issues and Challenges with Conventional Treatment

- Chlorine, as primary disinfectant, was not effective against parasites (Giardia and Cryptosporidium)
- Chlorine also led to DBP formation in the distributions system
- Very small levels of nitrate, pesticides, pharmaceuticals were being detected due to increased industrials activities
- Bromate formation made ozone unfeasible

Issues and Challenges with Conventional Treatment

- Chlorine, as primary disinfectant, was not effective against parasites (Giardia and Cryptosporidium)
- Chlorine also led to DBP formation in the distributions system
- Very small levels of nitrate, pesticides, pharmaceuticals were being detected due to increased industrials activities
- Bromate formation made ozone unfeasible

UV-H2O2 AOP was considered as a viable alternative

- It was investigated against a range of contaminants (e.g., atrazine, NDMA, MTBE, 1,4dioxane, bisphenol A, microcystine and pharmaceuticals e.g., diclofenac, ibuprofen)
- Studies focused primarily on medium pressure lamp UV system
- The use of UV also provided primary disinfection, helping to eliminate the use of Cl₂

Full Scale UV-H₂**O**₂ *Andijk – the Netherlands* Inactivation of 3 different pathogens

Full Scale UV-H₂O₂ *Andijk – the Netherlands* Removal of selected micropollutants

The technology was adopted and a full scale system was installed in 2004, treating a design flow rate of about 4000 m³/h and 80% destruction of atrazine

 All contaminants were removed at UV doses up to about 540 mJ/cm² (0.56 kWh/m³) and hydrogen peroxide concentrations of about 6 mg/L

Selected Full Scale UV-H₂O₂

Location	Contaminants	Flow rate (MLD)	Technology used
Region of Peel, ON, Canada	MIB, Geosmin	390	UV-H2O2 (MP UV)
Orange County,	NDMA,	379	UV-H2O2 (LP
CA, USA	1,4-Dioxane		UV)
PWN Heemskerk, Netherlands	Pesticides	144	UV-H2O2 (MP UV)
Aurora, Colorado,	NDMA,	190	UV-H2O2 (LP
USA	1,4-Dioxane		UV)
Luggage Point,	NDMA,	70	UV-H2O2 (LP
Brisbane	1,4-Dioxane		UV)

Summary

UV based AOPs are rapidly growing solution alternatives for:

- Degradation of micro-pollutants in drinking water sources
 - In addition to **DISINFECTION**
- Removal of taste and odor (T&O) from drinking water
- Water re-use and reclamation

Thank You !

Madjid Mohseni, Ph.D., P.Eng.

Department of Chemical & Biological Engineering University of British Columbia Phone: +1(604)822-0047 E-mail: mmohseni@chbe.ubc.ca

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA